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Abstract

The coronavirus disease (COVID-19) pandemic has led to a devastating effect

on the global public health. Computed Tomography (CT) is an effective tool in

the screening of COVID-19. It is of great importance to rapidly and accurately

segment COVID-19 from CT to help diagnostic and patient monitoring. In this

paper, we propose a U-Net based segmentation network using attention mech-

anism. As not all the features extracted from the encoders are useful for seg-

mentation, we propose to incorporate an attention mechanism including a

spatial attention module and a channel attention module, to a U-Net architec-

ture to re-weight the feature representation spatially and channel-wise to cap-

ture rich contextual relationships for better feature representation. In addition,

the focal Tversky loss is introduced to deal with small lesion segmentation.

The experiment results, evaluated on a COVID-19 CT segmentation dataset

where 473 CT slices are available, demonstrate the proposed method can

achieve an accurate and rapid segmentation result on COVID-19. The method

takes only 0.29 second to segment a single CT slice. The obtained Dice Score

and Hausdorff Distance are 83.1% and 18.8, respectively.
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1 | INTRODUCTION

In December 2019, a novel coronavirus, now designated
as COVID-19 by the World Health Organization (WHO),
was identified as the cause of an outbreak of acute respi-
ratory illness.1,2 The pandemic of COVID-19 is spreading
all over the world and causes a devastating effect on the
global public health. As a form of pneumonia, the infec-
tion causes inflammation in alveoli, which fills with fluid
or pus, making the patient difficult to breathe.3 Similar to
other coronaviral pneumonia such as Severe Acute Respi-
ratory Syndrome (SARS) and Middle East Respiratory
Syndrome (MERS), COVID-19 can also lead to acute
respiratory distress syndrome (ARDS).4,5 In addition, the
number of people infected by the virus is increasing

rapidly. Up to August 11, 2020, 19 936 210 cases of
COVID-19 have been reported in over 200 countries and
territories, resulting in approximately 732 499 deaths,*
while there is no efficient treatment at present.

Due to the fast progression and infectious ability of
the disease, it is urgent to develop some tools to accurate
diagnose and evaluate the disease. Although the real-time
polymerase chain reaction (RT-PCR) assay of the sputum
is considered as the gold standard for diagnosis, while it
is time-consuming and has been reported to suffer from
high false negative rates.6,7 In clinical practice, Chest
Computed tomography (CT), as a non-invasive imaging
approach, can detect certain characteristic manifestations
in the lung associated with COVID-19, for example,
ground-glass opacities and consolidation are the most
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relative imaging features in pneumonia associated with
SARS-CoV-2 infection. Therefore, Chest CT is considered
as a low-cost, accurate, and efficient method diagnostic
tool for early screening and diagnosis of COVID-19. It
can be evaluated how severely the lungs are affected, and
how the patient's disease is evolving, which is helpful in
making treatment decisions.8-12

A number of artificial intelligence (AI) systems based
on deep learning have been proposed and results have
been shown to be quite promising in medical image anal-
ysis.13-16 Compared to the traditional imaging workflow
heavily relies on the human labors, AI enables more safe,
accurate, and efficient imaging solutions. Recent AI-
empowered applications in COVID-19 mainly include
the dedicated imaging platform, the lung and infection
region segmentation, the clinical assessment and diagno-
sis, as well as the pioneering basic and clinical research.
Segmentation is an essential step in AI-based COVID-19
image processing and analysis for make a prediction of
disease evolution. It delineates the regions of interest
(ROIs), for example, lung, lobes, bronchopulmonary seg-
ments, and infected regions or lesions, in the chest X-ray
or CT images for further assessment and quantification.17

There are a number of researches related to COVID-19.
For example, Zheng et al18 proposed a weakly-supervised
deep learning-based software system using 3D CT vol-
umes to detect COVID-19. Goze et al19 presented a sys-
tem that utilizes 2D slice analysis and 3D volume
analysis to achieve the detection of COVID-19. Jin et al20

proposed an AI system for fast COVID-19 diagnosis,
where a segmentation model is first used to obtain the
lung lesion regions, and then the classification model is
used to determine whether it is COVID-19-like for each
lesion region. Li et al8 developed a COVID-19 detection
neural network (COVNet) to extract visual features from
volumetric chest CT exams for distinguishing COVID-19
from Community Acquired Pneumonia (CAP). Chen
et al21 proposed to use Unet++22 to extract valid areas
and detect suspicious lesions in CT images.

U-net23 is the most widely used encoder-decoder net-
work architecture for medical image segmentation, since
the encoder captures the low-level and high-level fea-
tures, and the decoder combines the semantic features to
construct the final result. However, not all features
extracted from the encoder are useful for segmentation.
Therefore, it is necessary to find an effective way to fuse
features, we focus on the extraction of the most informa-
tive features for segmentation. Hu et al24 introduced the
Squeeze and Excitation (SE) block to improve the repre-
sentational power of a network by modeling the interde-
pendencies between the channels of its convolutional
features. Roy et al25 introduced to use both spatial and

channel SE blocks (scSE), which concurrently
recalibrates the feature representations spatially and
channel-wise, and then combine them to obtain the final
feature representation. Inspired by this work, we incorpo-
rate an attention mechanism including both spatial atten-
tion and channel one to our segmentation network to
extract more informative feature representation to
enhance the network performance.

In this paper, we propose a deep learning based seg-
mentation with the attention mechanism. A preliminary
conference version appeared at ISBI 2020,26 which
focused on the multi-model fusion issue. This journal
version is a substantial extension, including (a) An auto-
matic COVID-19 CT segmentation network. (b) A focal
tversky loss function (different from the paper of ISBI)
which is introduced to help to segment the small
COVID-19 regions. (c) An attention mechanism includ-
ing a spatial attention module and a channel attention
module is introduced to capture rich contextual relation-
ships for better feature representations.

The paper is organized as follows: Section 2 offers an
overview of this work and details our model, Section 3
describes experimental setup, Section 4 presents the
experimental results, Section 5 discusses the proposed
method and Section 6 concludes this work.

2 | METHOD

2.1 | The proposed network architecture

Our network is mainly based on the U-Net
architecture,23 in which we integrate an attention mecha-
nism, res_dil block and deep supervision. The encoder of
the U-Net is used to obtain the feature representations.
The feature representation at each layer are input into an
attention mechanism, where they will be re-weighted
along channel-wise and space-wise, and the most infor-
mative representations can be obtained, and finally they
are projected by decoder to the label space to obtain the
segmentation result. In the following, we will describe
the main components of our model: encoder, decoder,
and res_dil block, deep supervision and attention mecha-
nism. The network architecture scheme is described in
Figure 1.

2.2 | Encoder and decoder

The encoder is used to obtain the feature representations.
It includes a convolutional block, a res_dil block followed
by skip connection. In order to maintain the spatial
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information, we use a convolution with stride = 2 to
replace pooling operation. It is likely to require different
receptive field when segmenting different regions in an
image. All convolutions are 3 × 3 and the number of fil-
ter is increased from 32 to 512. Each decoder level begins
with up-sampling layer followed by a convolution to
reduce the number of features by a factor of 2. Then the
upsampled features are combined with the features from
the corresponding level of the encoder part using concat-
enation. After the concatenation, we use the res_dil block
to increase the receptive field. In addition, we employ
deep supervision27 for the segmentation decoder by

integrating segmentation layers from different levels to
form the final network output, shown in Figure 2.

2.3 | Res_dil block

It is likely to require different receptive field when
segmenting different regions in an image. Since standard
U-Net cannot get enough semantic features due to the
limited receptive field, inspired by dilated convolution,28

we proposed to use residual block with dilated convolu-
tions on both encoder part and decoder part to obtain fea-
tures at multiple scales, the architecture of res_dil is
shown in Figure 2. The res_dil block can obtain more
extensive local information to help retain information
and fill details during training process.

To demonstrate that the proposed res_dil can enlarge
the receptive field mathematically, we let F : Z2 ! R be a
discrete function, Ωr = [−r, r]2 � Z2and let k : Ωr ! R be
a discrete filter size (2r + 1)2. The discrete convolution
operator ★ can be described as follows:

F ?kð Þ=
Xr

m= −r

Xr

n= −r
F x−m,y−nð Þk m,nð Þ ð1Þ

Let l be a dilation factor and the l-dilated convolution
operation ★l can be defined as:

F ? lkð Þ=
Xr

m= −r

Xr

n= −r
F x− lm,y− lnð Þk m,nð Þ ð2Þ

We assume F0, F1,…, Fn − 1 : Z
2 ! R are a discrete

functions, and k0, k1,…, kn − 2 : Z
2 ! R are discrete 3 × 3

filters. In addition, we apply the filters with exponentially
increasing dilation factors, such as 20, 21, …, 2n − 2. Then,
the discrete function Fi + 1 can be described as:

FIGURE 1 The architecture of the proposed network. The network takes a CT slice as input and directly outputs the COVID-19 region

[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 The architecture of our proposed Res dil block

(left) and Deep supervision (right). IN refers instance

normalization, Dil conv the dilated convolution (rate = 2,

4, respectively). We refer to the vertical depth as level, with higher

levels being higher spatial resolution. In the deep supervision part,

Input n refers the output of res dil block of the nth level in the

decoder, Output n refers the segmentation result of the nth level in

the decoder [Color figure can be viewed at wileyonlinelibrary.com]
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Fi+1 =Fi ? 2i ki, i=0,1,…,n−2 ð3Þ

According to the definition of receptive field, the receptive
field size of each element in Fi + 1 is (2

i + 2 − 1) × (2i + 2 − 1),
which is a square of exponentially increasing size. So we can
obtain a 15 × 15 receptive field by applying our proposed
res_dil block with the dilation factor 2 and 4, respectively,
while the classical convolution can only obtain 7 × 7 recep-
tive field, see Figure 3.

Since there exists many small regions of interests
(ROIs) in a COVID-19 CT image, therefore, increasing
the receptive field of the feature representation is essen-
tial and it can help the network to extract more contex-
tual information to achieve a better segmentation result.

2.4 | Attention mechanism

In U-net shaped network, not all the features obtained by
the encoder are effective for segmentation. In addition,
not only the different channels (filters) have various con-
tributions but also different spatial location in each chan-
nel can give different weights on feature representation
for segmentation. To this end, we introduced a “scSE
based” attention mechanism in both encoder and decoder
to take into account the most informative feature repre-
sentations along channel-wise and spatial-wise for seg-
mentation, the architecture is described in Figure 4.

The individual feature representations from each
channel are first concatenated as the input representation
Z = [z1, z2, …, zn], Zk � RH × W, n is the number of

channel in each layer. To simplify the description, we
take n = 32.

In the channel attention module, a global average
pooling is first performed to produce a tensor
g � R1 × 1 × 32, which represents the global spatial infor-
mation of the representation, with its kth element

gk =
1

H ×W

XH

i

XW

j
Zk i, jð Þ ð4Þ

Then two fully-connected layers are applied to encode
the channel-wise dependencies, ĝ=W 1 δ W 2gð Þð Þ, with
W1�R32× 16,W2�R16× 32, being weights of two fully-
connected layers and the ReLU operator δ(�). ĝ is
then passed through the sigmoid layer to obtain the
channel-wise weights, which will be applied to the input
representation Z through multiplication to achieve the
channel-wise representation Zc, the σ ĝkð Þ indicates the
importance of the i channel of the representation:

Zc = σ ĝ1ð Þz1,σ ĝ2ð Þz2,…,σ ĝ32ð Þz32½ � ð5Þ

In the spatial attention module, the representation
can be considered as Z = [z1,1, z1,2, …, zi,j, …, zH,W],
Zi,j � R1 × 1 × 32, i � 1, 2, …, H,j � 1, 2, …, W and then a
convolution operation q = Ws ? Z,q � RH × W with weight
Ws � R1 × 1 × 32 × 1, is used to squeeze the spatial domain,
and to produce a projection tensor, which represents the
linearly combined representation for all channels for a
spatial location. The tensor is finally passed through a
sigmoid layer to obtain the space-wise weights and to

FIGURE 3 The illustration

of receptive field, R denotes the

receptive field, k denotes the

convolution kernel size, and l

denotes the dilated factor. A, A

convolution network which

consists of two k = 3 × 3 and

l = 1, 1 convolutional layers. B,

A convolution network which

consists of two k = 3 × 3 and

l = 2, 4 dilated convolutional

layers [Color figure can be

viewed at

wileyonlinelibrary.com]
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achieve the spatial-wise representation Zs, the σ(qi,j) that
indicates the importance of the spatial information (i, j)
of the representation:

Zs = σ q1,1
� �

z1,1,…,σ qi,j
� �

zi,j,…,σ qH,W

� �
zH,W

h i
ð6Þ

The fused feature representation is obtained by
adding the channel-wise representation and space-wise
representation:

Zf =Zc +Zs ð7Þ

The attention mechanism can be directly adapted to
any feature representation problem, and it encourages
the network to capture rich contextual relationships for
better feature representations.

2.5 | Loss function

In the medical community, the Dice Score Coefficient
(DSC), defined in (8), is the most widespread metric to
measure the overlap ratio of the segmented region and
the ground truth, and it is widely used to evaluate seg-
mentation performance. Dice Loss (DL) in (9) is defined
as a minimization of the overlap between the prediction
and ground truth.

DSCc =

PN
i=1picgic + εPN

i=1 pic + gicð Þ+ ε
ð8Þ

DLc =
X

c
1−DSCcð Þ ð9Þ

where N is the number of pixels in the image, c is the set
of the classes, pic is the probability that pixel i is of the

lesion class c, the same is true for gic, ε is a small constant
to avoid dividing by 0.

One of the limitation of Dice Loss is that it penalizes
false positive (FP) and false negative (FN) equally, which
results in segmentation maps with high precision but low
recall. This is particularly true for highly imbalanced
dataset and small regions of interests (ROI) such as
COVID-19 lesions. Experimental results show that FN
needs to be weighted higher than FP to improve recall
rate. Tversky similarity index29 is a generalization of the
DSC which allows for flexibility in balancing FP and FN:

TIc =

PN
i=1picgic + εPN

i=1picgic + α
PN

i=1pi0cgic + β
PN

i=1picgi0c + ε
ð10Þ

where N is the number of pixels in the image, c is the set
of the classes, pic is the probability that pixel i is of the
lesion class c and pi0c is the probability that pixel i is of
the non-lesion class 0c, the same is true for gic and gi0c, ε is
a small constant to avoid dividing by 0. When
α = β = 0.5, TIc is the same as DLc, in our work,
α = 0.7, β = 0.3.

Another issue with the DL is that it struggles to seg-
ment small ROIs as they do not contribute to the loss sig-
nificantly. To address this, Abraham et al30 proposed the
Focal Tversky Loss function (FTL).

FTLc =
X

c
1−TIcð Þ1γ ð11Þ

where γ varies in the range [1, 3], in our work, γ= 4
3 . In

practice, if a pixel is misclassified with a high Tversky
index, the FTL is unaffected. However, if the Tversky
index is small and the pixel is misclassified, the FTL will
decrease significantly. To this end, we used FTL to train
the network to help segment the small COVID-19 regions.

FIGURE 4 The

architecture of attention

mechanism. The individual

feature representations (z1, z2, …,
z32) are first concatenated as Z,

and then they are recalibrated

spatially and channel-wise to

achieve the Zs and Zc, final they

are added to obtain the rich

fused feature representation Zf

[Color figure can be viewed at

wileyonlinelibrary.com]
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3 | EXPERIMENTAL SETUP

3.1 | Dataset and preprocessing

The two datasets used in the experiments come from Ital-
ian Society of Medical and Interventional Radiology:
COVID-19 CT segmentation dataset.† Dataset-1 includes
100 axial CT images from 60 patients with Covid-19. The
images have been resized, grayscaled, and compiled into
a single NIFTI-file. The image size is 512 × 512 pixels.
The images have been segmented by a radiologist using
three labels: ground-glass, consolidation and pleural effu-
sion. Dataset-2 includes 9 volumes, total 829 slices, where
373 slices have been evaluated and segmented by a radi-
ologist as COVID-19 cases. We resize these images from
630 × 630 pixels to 512 × 512 pixels same as Dataset-1.
And an intensity normalization is applied to both
datasets. Since there are severe data imbalance in the
dataset. For example, in Dataset-1, only 25 slices have
pleural effusion, which is the smallest region among all
the COVID-19 lesion regions (see the green region in
Figure 5). In Dataset-2, only 233 slices have consolida-
tion, which takes up a small amount of pixels in the
image (see the yellow region in Figure 5). We take all the
lesion labels as a COVID-19 lesion. Because of the small
number of data in both two datasets, we combine the two
datasets as our final training dataset, finally, 473 CT
slices are used to train our model. Here, we give some
example images of the COVID-19 CT segmentation
dataset in Figure 5.

3.2 | Implementation details

Our network is implemented in Keras with a single
Nvidia GPU Quadro P5000 (16G). The network is trained
by focal tversky loss and is optimized using the Adam
optimizer, the initial learning rate = 5e − 5 with a
decreasing learning rate factor 0.5 with patience of

10 epochs. Early stopping is employed to avoid over-
fitting if the validation loss is not improved over
50 epochs. We randomly split the dataset into 80% train-
ing and 20% testing.

3.3 | Evaluation metrics

Segmentation accuracy determines the eventual success
or failure of segmentation procedures. To measure the
segmentation performance of the proposed methods, two
evaluation metrics: Dice and Hausdorff Distance are used
to obtain quantitative measurements of the segmentation
accuracy.

3.3.1 | Dice Score

It is designed to evaluate the overlap rate of prediction
results and ground truth. Dice Score ranges from 0 to
1, and the better predict result will have a larger Dice
Score value.

Dice Score=
2TP

2TP+FP+FN
ð12Þ

where TP represents the number of true positive voxels,
FP represents the number of false positive voxels, and FN
represents the number of false negative voxels.

3.3.2 | Hausdorff Distance (HD)

It is computed between boundaries of the prediction
results and ground-truth, it is an indicator of the largest
segmentation error. The better predict result will have a
smaller HD value.

HD=max r�∂Rdm s,rð Þ,s�∂Sdm r,sð Þf g ð13Þ

FIGURE 5 Example images of the COVID-19 CT segmentation dataset. A and C, CT image from Dataset-1 and Dataset-2; B and D,

ground truth of panels A, C, respectively, ground-glass is shown in blue, consolidation is shown in yellow and pleural effusion is shown in

green [Color figure can be viewed at wileyonlinelibrary.com]
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where ∂S and ∂R are the sets of lesion border pixels for
the predicted and the real annotations, and dm(v, v) is the
minimum of the Euclidean distances between a voxel v
and voxels in a set v.

4 | EXPERIMENT RESULTS

In this section, we conduct extensive comparative experi-
ments including quantitative analysis and qualitative
analysis to demonstrate the effectiveness of our proposed
method. In Section 4.1.1, we first perform an ablation
experiment to see the importance of our proposed res_dil
block. Then in Section 4.1.2, we analyze the performance
of our proposed method trained by Focal Tversky Loss
function. In Section 4.1.3, we validate the contribution of
proposed attention mechanism based fusion block. In
Section 4.1.4, we compare our method with the state-of-
the-art methods. In Section 4.2.1 the qualitative experi-
ments of our method and the qualitative comparison
experiments in Section 4.2.2 with the state-of-the-art
methods are carried out to further demonstrate the con-
tribution of our proposed method.

4.1 | Quantitative analysis

In this section, we conduct several experiments to vali-
date the performance of each key component of our
method, including the res_dil block, focal tversky loss
and attention mechanism. Furthermore, we compare our
method with the state-of-the-art methods.

4.1.1 | Performance analysis of res_dil
block

To assess the performance of our method, and to ana-
lyze the impact of the proposed components of our net-
work, we first did an ablation study, the results are
shown in Table 1. With regard to the proposed res_dil
block, we can observe that the proposed res_dil block
can boost the “Backbone + DL” with the improvement
of 0.12% and 3.70% in the terms of Dice Score and
Hausdorff Distance. Also we can see an improvement of
0.25% and 46.48% in the terms of Dice Score and
Hausdorff Distance compared to “Backbone + FTL”. We
explain that the larger receptive region obtained from
res_dil block can help the network to capture more rich
feature information in order to achieve a better segmen-
tation result. The results clearly show that the proposed
res_dil block is necessary for boosting the segmentation
performance.

4.1.2 | Performance analysis of FTL

We also demonstrate the effectiveness of applying the
Focal Tversky Loss function (FTL). From Table 1, we can
observe the proposed method (Backbone + Res_dil
+ Attention) trained with DL achieves Dice Score, and
HD of 82.6% and 30.7, respectively. However, using FTL
can aide the network to focus more on the false negative
voxels, which increases 0.61% of Dice Score and 38.76%
of Hausdorff Distance. This suggests that applying the
FTL to train our model can achieve the better results.

4.1.3 | Performance analysis of attention
mechanism

To investigate the contribution of proposed attention
mechanism, we also did an another ablation experiment
in Table 1. We can observe that integrating the attention
mechanism to the “Backbone + DL” method can boost
the performance, since we can see an increase of 1.86% of
Dice Score and 20.83% of Hausdorff Distance, and also an
improvement of 1.85% of Dice Score compared to
“Backbone + FTL.” The main reason is that the attention
mechanism can help to emphasis on the most important
feature representation for segmentation. In addition, the
proposed network trained by FTL combines the benefits
of attention mechanism can obtain the best results with
Dice = 83.1% and HD = 18.8, which has an improvement
of 2.97% and 56.48% in the terms of Dice Score and
Hausdorff Distance compared to the “Backbone + DL.”

To further demonstrate the contribution of attention
mechanism, we select three examples to visualize the fea-
ture maps in Figure 6. The first column shows the input
CT image, the second column shows the ground truth,

TABLE 1 Comparison of different methods on COVID-19 CT

segmentation dataset, bold results show the best scores

Methods
Dice
score (%)

Hausdorff
Distance (mm)

Backbone + DL 80.7 43.2

Backbone + FTL 80.9 35.5

Backbone + Res_dil + DL 80.8 41.6

Backbone + Res_dil + FTL 81.1 19.01

Backbone + Attention + DL 82.2 34.2

Backbone + Attention + FTL 82.4 32.3

Backbone + Res_dil
+ Attention + DL

82.6 30.7

Backbone + Res_dil
+ Attention + FTL

83.1 18.8
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the third and fourth columns show the feature maps
before and after using the attention mechanism. From
the results, we can observe that without using the atten-
tion mechanism, the network cannot capture all the
interested lesion region or just capture a part of inter-
ested segmentation regions, however, applying the atten-
tion mechanism can help the network learn more useful
feature information for the final segmentation, and we
can see the clearer ROIs of the segmentation. The visuali-
zation results further validate the effectiveness of the pro-
posed attention mechanism.

4.1.4 | Comparison with the state-of-the-
art methods

We compare our method with the state-of-the-art
methods including Unet,23 Unet++,22 Attention-Unet,31

the quantitative results are shown in Table 2. As we can
see, the classic U-Net can achieve the Dice Score and
Hausdorff Distance of 82.5% and 23.4, respectively. While
the U-Net++ obtains a better results thanks to the nested
connection between encoder and decoder, which reduces
the semantic gap between the feature maps of the
encoder and decoder sub-networks. However, the
improvement is still not impressive. Compared to these
two state-of-the-art approaches, the attention U-Net has a
worse result even if the attention gates are used. How-
ever, our proposed method outperforms all the methods

by a large margin, which achieves the best segmentation
results across all the evaluation metrics. We attribute the
improvement to the proposed components including
res_dil block, attention mechanism, which can help the
network capture more useful feature information to
enhance the segmentation. Also, the FTL can aide the
network to achieve a better performance on the
small ROI.

4.2 | Qualitative analysis

In order to demonstrate the effectiveness of our model,
we randomly select several examples on COVID-19 CT
segmentation dataset and visualize the results in Figures 7
and 8.

FIGURE 6 Visualization of

proposed attention mechanism.

The rows show the examples,

the column (1) input CT image,

(2) ground truth, (3) before

using attention mechanism,

(4) after using attention

mechanism

TABLE 2 Comparison with the state-of-the-art methods on

COVID-19 CT segmentation dataset, bold results show the best

scores

Methods Dice score (%)
Hausdorff
distance (mm)

Attention-U-Net31 75.5 41.3

U-Net (MICCAI'15)23 82.5 23.4

U-Net ++(TMI'19)22 82.6 22.2

Ours 83.1 18.8
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FIGURE 7 Segmentation results of some examples on COVID-19 CT dataset. The first two examples are with many COVID-19 lesion

regions, the last two examples are with few COVID-19 regions. A, CT image; B, Backbone + DL; C, Backbone + Res dil + DL; D, Backbone

+ Attention + DL; E, Backbone + Res dil + Attention + DL, F, Backbone + Res dil + Attention + FTL; G, Ground truth, red arrow

emphasizes the improvement of using res dil block (from B to C), green arrow emphasizes the improvement of applying attention

mechanism (from B to D), yellow arrow emphasizes the improvement of applying FTL (from E to F) [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 8 Segmentation results of some examples between different methods on COVID-19 CT dataset. Red arrow emphasizes the

mis-segmentated regions of each method [Color figure can be viewed at wileyonlinelibrary.com]
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4.2.1 | Visualization results of our
proposed method

From Figure 7, we can observe that the backbone trained
by DL could give a rough segmentation result, while it
fails to segment many small lesion regions. With the
application of res_dil block and attention mechanism, it
can be seen that the proposed res_dil block enhance the
segmentation results benefitting from the larger receptive
field. In addition, the attention mechanism can help to
capture more rich feature information to further refine
the segmentation result. Compared to panel E, the pro-
posed network trained by FTL (F) can achieve the result
closest to the ground truth. The obtained results have
demonstrated that leveraging the res_dil block, the atten-
tion mechanism and the FTL can generally enhance the
COVID-19 segmentation performance.

4.2.2 | Comparison with the state-of-the-
art methods

We also visualize the comparison results with the state-
of-art methods in Figure 8. From the results, we can
observe that the proposed model can detect the lesion
regions effectively. Also, the segmentation results are
close to the ground truth. On the contrary, the Attention-
U-Net and U-Net give unsatisfied results, from the first
two examples, we can see some non-target regions are
detected. And in the third example, some target regions
cannot be segmented. However, U-Net ++ can achieve a
better result for the first example, but still not promising
in the last two examples. As can be observed, compared
with these three methods, our proposed method yields
more accurate segmentation results, we explain the suc-
cess of our method is due to all the proposed components
in the network.

5 | DISCUSSION

Due to the fast progression and infectious ability of the
COVID-19, it is necessary to develop some tools to accu-
rate diagnose and evaluate the disease. Recently, deep
learning based methods have shown promising segmen-
tation performance. To this end, we presented an auto-
matic COVID-19 CT segmentation network. The network
is based on the U-Net architecture and we integrated an
attention mechanism, res_dil block and FTL loss to the
network. The extensive ablation experiments in Sec-
tion 4.1 demonstrate the effectiveness of each proposed
component, and our method can achieve the best results

when all the components are integrated together. Fur-
thermore, to prove the effectiveness of proposed attention
mechanism, we visualize the feature maps before and
after using the attention mechanism. We can observe that
the ROI of segmentation is clearer after applying the
attention mechanism. We attribute it to the spatial and
channel attention modules, which aide the network
to extract rich contextual feature representation. In
addition, we also compare our method with the state-of-
the-art methods, and the quantitative and qualitative
comparison results further prove the advantage of our
proposed method.

The advantages of our proposed network architecture:
(a) The experiment results evaluated on the two metrics
(Dice Score and Hausdorff Distance) demonstrate that our
proposed method can give an impressing segmentation
result. (b) The comparison results with the other state-of-
the-art approached demonstrate the contribution of our
method. (c) The architecture is an end-to-end deep leaning
approach and fully automatic without any user interven-
tions. (d) The proposed attention based fusion block can
be generalized to other multi-modal segmentation task.

However, our work has some limitations that inspire
future directions. (a) The study is limited by the small
dataset. Therefore, in the future, we would like to use a
larger training dataset or apply the data augmentation
techniques to achieve more competitive results. (b) The
network is designed to segment the single label, we plan
to apply our method to other multi-class segmentation
tasks and compared with other related methods. (c) The
proposed method is evaluated for the public COVID-19
segmentation dataset, in the future, we plan to validate
our method on other segmentation tasks (eg, medical
organ segmentation or non-medical segmentation.)

6 | CONCLUSION

In this paper, we have presented a U-Net based network
using attention mechanism for COVID-19 segmentation.
Since most current segmentation networks are trained
with Dice loss, which penalize the false negative voxels
and false positive voxels equally. To this end, we applied
the focal tversky loss to train the model to improve the
small ROI segmentation performance. IN addition, the
res_dil block and the attention mechanism are used in
each layer to capture rich contextual relationships for
better feature representations. We evaluated our pro-
posed network on COVID-19 CT segmentation datasets
and compared with the state-of-the-art approaches, the
experiment results demonstrate thesuperior performance
of our method.
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